请教两道高中数学题

Jenny_Hull

知名会员
注册
2004-03-10
消息
103
荣誉分数
21
声望点数
128
1. One holiday, I gave each of my 3 grandsons x coins and each of my 4 granddaughters y coins. The total number of coins that I gave to my grandchildren will allow for only one ordered pair of positive intergers (x,y). At most how many coins did I give to my 7 grandchildren?



2 Reading from left to right, for how many integers greater than 9 is it true that every digit after the first exceeds the digit it follows? (note: as an example, one such integer is 24789.)
 
1. One holiday, I gave each of my 3 grandsons x coins and each of my 4 granddaughters y coins. The total number of coins that I gave to my grandchildren will allow for only one ordered pair of positive intergers (x,y). At most how many coins did I give to my 7 grandchildren?







2 Reading from left to right, for how many integers greater than 9 is it true that every digit after the first exceeds the digit it follows? (note: as an example, one such integer is 24789.)



书上给得第一题答案是24,第二题答案是502,哪位数学高手给讲解讲解?
 
书上给得第一题答案是24,第二题答案是502,哪位数学高手给讲解讲解?




就第一道题,也试着解释一下,第二道 您找 何哥去。:p :p :p :p 先说明,不是什么数学高手,就

一249 +1 + 爱玩的小朋友。解得好,请鼓掌,解不好,不要给两巴掌哟。。。 :D :D :D :D


1>。 这题,主要考学生的是对"only one ordered pair of positive integers (x,y)"的理解。

条件 1.1 答案必须是 pair of positive integers(x,y),那就是

(1,1) (1,2) (1,3) ...(1,N);
(2,1) (2,2) (2,3) ...(2,N);
(3,1) (3,2),(3,3) ...(3,N);
...
...
如此类推。 (-15,2)成吗? No! 因为要positive,(6,0.25) 成吗? No!因为要 integers。


条件1.2 ordered pair of positive integers (x,y),就是说 (1,2) 与 (2,1),或者(1,3)与 (3,1),

或者 (2,3)与 (3,2) ... 等等,只算一个pair,不是两个pair。玩马甲的不算,一人一刀,过招才有劲嘛。:p :p :p :p


条件1.3 only one ordered pair of positive integers (x,y),就是,只容许有一个(x,y)的答案,不能

有两个或以上(x,y)的答案。。。就是国内一子政策的数学版嘛。例如,总数coins是25的话,

3X + 4Y =25 的(X,Y)的解,可以是(3,4) 与 (7,1)两,派S啦,根据条件1.3,喀嚓! 所以总数coins是

25不能当答案的候选人。那总数coins是26呢? 也不是成,因为它也超生了 (2,5) 与(6,2)。那20成吗?

能当答案的候选人吗? 成! 因为它只生了(4,2) (3*4 + 4*2 = 20)。


2>。 学生可能问那 (3,4)、 (7,1)、(2,5) 、(6,2)或者(4,2)哪来的? 猜的?

其实就是把(1,2,3,4,5,6,7,8,9,10 ...) 代入算式 3X + 4Y 的 X 中,同时假设 3X + 4Y 等于1,

然后求所有Y,不就得到 (X,Y)的值了嘛。等于1 算完了,就算等于2,2完,就3 。。。如此类推。

当然,聪明的学生是会从等于7开始试而不是1,因为条件 1.1说明了(X,Y)的值最小是(1,1),所以

3X + 4Y= 多少的答案候选人必然最少是7,从7开始。其实这些计算,用 excel 一拉,答案就出来了。


X Y Total

1,1 7
2,1 10
1,2 11
3,1 13
2,2 14
1,3 15
4,1 16
3,2 17
2,3 18
1,4 19
5,1 19
4,2 20
3,3 21
2,4 22
6,1 22
1,5 23
5,2 23
4,3 24
3,4 25
7,1 25
2,5 26
6,2 26
1,6 27
5,3 27
4,4 28
8,1 28


3>。以上的 1>。是为理解题目,2>。是计算出X Y Total 的可能答案,要解释给孩子听为啥coins的

最大总数是答案24,最直接的就是画图。把上面26个(X,Y)的值标到一XY的图上,马上就能看到26个

(X,Y)的值,只有12值是实际答案候选人。它们coins的总数分别是7,10,13,16,11,14,17,

20,15,18,21,24。而图里最右上角的就是总数24,(X,Y) =( 4,3) 的点。

















 
同意楼上的解释,应该是要找出 total number of coins, s=3x+4y, 使得 (x,y) 只有一组正整数解。显然,s 至少等于 7。

从 s=3x+4y 出发,可以推出, (1) x=4z-s, (2) y=-3z+s, 其中 z 是任何整数。从这两个式子出发,不难验证,当 s 为大于 24 的任何整数时,z 至少存在两个值使得 x 和 y 都大于 0;反之当 s 为大于 6 且小于 25 的任何整数时,z 只存在一个值使得 x 和 y 都大于 0。所以答案是 24。
 
The second question is simple. Ask yourself: how many ways can one pick two different numbers from {1, 2, 3, ..., 8, 9}? How about picking 3 numbers? ... How about picking 9 numbers? Add up the answers of above, you get the answer to the original question.

The first question is equivalent to the question of finding the largest integer C such that there is a unique pair of positive integers (x, y) such that 3x+4y=C.

First note:  if a number can be written as 3x+4y with unique positive (x, y), then x<5. Proof: suppose d, an integer, is writes as 3x+4y where x is greater or equal to 5, then let x'=x-4, y'=y+3. It is easy to see d can also be written as 3x'+4y'. proved by contradiction.

Second,  if a number can be written as 3x+4y with unique positive (x, y), then y<4. Similar proof as above.

Now, take (x, y) as the largest (x,y) pair with x<5, y<4. It is easy to see (4,3) as (x, y) and C =24 is the soluotion.
 
刚算了一下。c(9,2)+c(9,3)+...+c(9,8)+c(9,9) 正好502。c(n,k) denotes "n choose k".
 
满足条件的两位数有c(9,2)个。三位数有c(9,3)个。依次类推。
 
后退
顶部