[问题] About MATH 2107 Assignment 2

记得忘记

新手上路
注册
2002-05-03
消息
1,566
荣誉分数
0
声望点数
0
For question 2, is that good to put those 5 vectors into a matrix to solve it? I have no idea about this question and wanna share the above idea to you guys who are taking this course. Thank you.
 
是不是把5个VECTOR并起来,然后找他们的BASIS?
 
Since U Intersection V
Therefore, S=a1u1+a2u2=c1v1+c2v2+c3v3

Use this Eq to solve.
 
最初由 光之贱 发布
Since U Intersection V
Therefore, S=a1u1+a2u2=c1v1+c2v2+c3v3

Use this Eq to solve.

More details pls...
 
最初由 JBL 发布


More details pls...

suppose x is a basis for the subspace s,
u={u1,u2}, which is
{ 1 0 }
-2 1
0 0
3 -1

v={v1,v2,v3}
which is
{ here is too long.check the assignment! }

since x belongs to u intersection v
therefore, x=c1u1+c2u2=a1v1+a2v2+a3v3

[ c1 ] [ a1 ]
-2c1+c2 a2
0 = a3 = x
3c1-c2 0

.....

then i gotta the final answer should be
[ 1 ]
1
0
0
 
最初由 小志papa 发布
第一题有没有快捷的方法做出来?

2107估计没有简便方法.


Matrix N
答案不是Diagonalizable吧?
:o
 
final会不会考definition? 如果要考就惨了
 
最初由 光之贱 发布


2107估计没有简便方法.


Matrix N
答案不是Diagonalizable吧?
:o

为什么matrix N 不是diagonaizable呢?应该是吧。
 
最初由 小志papa 发布


为什么matrix N 不是diagonaizable呢?应该是吧。
我算出来也是diagonalizable
 
最初由 挥着翅膀的女孩 发布
我觉的二楼的做法对吧?
谁还有别的做法??
你呀,等明天抄贝:blink:
 
后退
顶部