1.
>> 1/(z*(z-1)) = 1/(z-1)-1/z = 1/(z-1)-1/(z - 0); and f(Zo) = 1/(2*pai*i) S f(Zo) /(Z -Zo) dz
>>: 1/(2*pai*i) S {e(z) *[1/(z-1)-1/(z - 0)]}dz = [e(1) - e(0)]
= e -1
2.?not sure 2?
>> e(i*t) = u;
sin(u) = sum (-1)~k * u~(2k+1)/(2k+)!, SUM = sin(u) /u;
i*u*dt = du, dt =du/(i*u);
3!=3*2
S f(z)/(z-a)dz = 2*pai*i*f(a)
S f(z)/(z-a)~(n+1)dz = 2*pai*i*{d~n[f(a)]} /n!
>>:
= S [1 - sin(u) / u]/(u*u) du/(i*u) = S 1 /(i*u*u*u) du - S sim(u)/(i*u*u*u*u) du
= S 1/(i*u~3) du - S sim(u)/(i*u~4) du
= S 1/[i*(u-0)~3] du - S sim(u)/[i*(u-0)~4] du
= 0 - 2*pai*i/i*{d~3[sin(0)]}/3!
= 0 - 2*pai*i/i*{-1}/3!
= pai/3
3. ?not sure?
f(X) = {d~n[f(Xo)]}*(X-Xo)~n /n!
>>= S f(z)dz
= 0 ?